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Abstract. The special character of certain degrees of freedom in two-layered neural networks
is investigated for on-line learning of realizable rules. Our analysis shows that the dynamics of
these degrees of freedom can be put on a faster timescale than those remaining, with the profit of
speeding up the overall adaptation process. This is shown for two groups of degrees of freedom:
second-layer weights and bias weights. For the former case our analysis provides a theoretical
explanation of phenomenological findings. The resulting learning algorithm is compared with
natural gradient descent in order to check whether the proposed scaling can be naturally derived
from that type of learning rule.

1. Introduction

Statistical mechanics has contributed deeply to the understanding of adaptive systems during
the past decades. Among such systems are neural networks [1,3] which are capable of learning,
i.e. of adapting themselves to a desired state by means of examples. As learning tasks can be
characterized by a certain amount of inherent randomness and a number of degrees of freedom
which is typically large, physics, and, in particular, statistical mechanics often provides a means
to understand such phenomena. The tools used to analyse such systems, e.g. thermodynamic
limit [1] and stochastic differential equations [2], allow one to describe learning processes
under a variety of circumstances, such as different architectures and training algorithms [1,3].
In addition, recent contributions [4–6] have shown how to compute optimal algorithms starting
from first principles.

In this paper, statistical mechanics is used to analyse learning in specific two-layered
neural networks. Such networks realize an input–output relation:

σ(ξ) =
K∑
j=1

wjg(Jj · ξ + ϑj ) (1)

whereg(·) is a sigmoidal function andW = {Jj , wj , ϑj }j=1,...,K denotes the set ofweights
of the network. TheN -dimensional vectorJj corresponds to the synaptic couplings of a
first-layer branch in a two-layered neural network, whilewj denotes the second-layer weights
connecting thej th input branch with the output node. The weights,ϑj , are usually referred
to asbiases. Given an array ofN inputsξ, the network computes its outputσ(ξ) according to
(1).

Two-layered networks of the form (1) can implement any continuous input–output relation
ξ ∈ RN → τ ∈ R [7] if the number of hidden unitsK is unrestricted. That is, given a set of
training examples,D = {ξ(n), τ (n)}n=1,...,αN the network can adjust its weightsW in order to
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implement the functionτ(ξ) as accurately as desired. In learning theory this target function
τ(ξ) is usually parametrized:

τ(ξ) =
M∑
j=1

vjg(Bj · ξ + ϕj ). (2)

This function can be viewed to be represented by a so-calledteacher networkwith weights
B = {Bj , vj , ϕj }. The learning task can then be metaphorically described as follows: a
student networkof functional form (1) is trained by means of examplesD provided by a
teacher network. The student’s task is to extract the teacher weightsB and, consequently,
the functional relationτ(ξ) from these examples. This is achieved by means of alearning
algorithm which describes how to use information contained in the training set in order to
adjust the weightsW.

Recently,on-line algorithmshave attracted considerable attention. For on-line learning
the presentation of examples used in the learning process occurs in a sequential manner. At
presentation of exampleξ(n), each weight,W ∈W, is updated according to

W(n + 1) = W(n) +
1

N
ηWfW(W(n), ξ(n), τ (n)). (3)

If one viewsnas a (discrete) time index, equation (3) describes the time evolution of the network
weights. Theweight functionf defines the on-line learning algorithm which describes how
the weightsW(n) of the student network ought to be changed in response to a given example,
{ξ(n), τ (n)}, at time stepn.

Our main focus here is not on a clever choice of the training algorithm, i.e. the functional
form of f , but on its proper scaling. In (3) we have separated out this scaling into the quantity
ηW which is usually referred to as thelearning rate. The only requirement we impose on
f = O(1) is that it vanishes at the desired solutionW = B. Thus, we only consider perfectly
realizable tasks (M = K) here, whereB is a fixed point in the dynamics ofW. In addition,
we focus on networks having a finite number of hidden units, i.e.K = O(1), whileN is large.

The paper is organized as follows: in section 2 we will review the learning dynamics of
standard backpropagation as developed in [9,10]. This will motivate a rescaling of biases and
second-layer weights discussed in section 3. Section 4 investigates the question of whether this
scaling behaviour can be derived from natural gradient descent. Finally, section 5 summarizes
the results.

2. Results for standard backpropagation

We restrict ourselves to on-line backpropagation [8], since for this choice of algorithm
the mathematical burden reduces significantly. In particular, averages can be performed
analytically [8, 9] if one chooses the network’s transfer functionsg to be the error function

g(z) = erf
(
z/
√

2
)
. However, the essential results of this work hold for any adaptive dynamics

of type (3). See [11] for details.
For on-line backpropagation the dynamics of the weights (3) reads

Ji (n + 1) = Ji (n)− ηJ
N
∇Ji ε(W, ξ) = Ji (n) +

ηJ

N
δiξ(n)

wi(n + 1) = wi(n)− ηw
N

∂

∂wi
ε(W, ξ) = wi(n) +

ηw

N
g(xi + ϑi)(τ − σ)

ϑi(n + 1) = ϑi(n)− ηϑ
N

∂

∂ϑi
ε(W, ξ) = ϑi(n) +

ηϑ

N
δi

(4)
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whereδi = wig
′(xi + ϑi) (τ − σ). The quantitiesxi = Ji · ξ andyi = Bi · ξ denote the

internal fieldsof the student and teacher network, respectively. The quadratic error measure,
ε(W, ξ) = 1

2[σ(ξ)−τ(ξ)]2, quantifies the degree of disagreement between the student and the
rule output for a particular random inputξ. Denoting the average over the input distribution
by 〈. . .〉ξ we define thegeneralization errorεg = 〈ε(W, ξ)〉ξ . It measures the validity of the
student’s hypothesis for the ruleτ(ξ).

The statistical mechanics analysis of on-line learning basically consists of two steps: the
introduction of order parameters and the average over the randomness of the training examples.
This allows one to investigatetypical behaviour together with the reduction of an extensive
number of degrees of freedom,W, to a finite number of meaningful observables. The very
property of these order parameters is to beself-averaging, i.e. their fluctuations vanish in
the thermodynamic limitN → ∞. The practical difficulty, however, consists of finding
appropriate order parameters such that the resulting macroscopic equations of motion can be
written in a closed form after averaging over the distribution of inputs.

We exemplify the theoretical analysis of on-line learning for the simplest two-layer
network. This consists of only one hidden unit (K = 1) and no bias weights (ϑ = 0 = ϕ):
σ = werf(J ·ξ/

√
2). Following the proposal of [10] we chooseR = B ·J ,Q = J ·J andw as

the order parameters. The first-layer order parametersR andQ describe the overlaps between
the first-layer weights of the teacherτ = verf(B · ξ/

√
2) and student network, respectively.

These are the familiar order parameters of perceptron learning (see, e.g., [1]) and learning in
so-called soft committee machines [8,9].

In order to motivate this work we shortly recall the analysis for the case where bothηJ and
ηw areO(1) [10,11]. Starting from the corresponding microscopic equations of motion (4) for
this simple network, it is straightforward to derive recursion relations for the mean values ofR,
Q andw by performing the average over the latest example input [8,9]. Since these quantities
become self-averaging in the thermodynamic limitN →∞, the description in terms of their
mean values is sufficient. In the same limit, one can interpretα = n/N as a continuous time
and obtain ordinary differential equations for the evolution of the learning network:

dR

dα
= ηJ 〈δy〉 dQ

dα
= 2ηJ 〈δx〉 + η2

J 〈δ2〉 dw

dα
= ηw〈g(x)(τ − σ)〉. (5)

The averages are over the two-dimensional Gaussian distribution of the internal fields{x, y}
which is determined through the correlations〈x2〉 = Q, 〈xy〉 = R and〈y2〉 = T .

The macroscopic equations of motion (5) are easily integrated numerically. The
asymptotic learning behaviour can be obtained analytically by a linearization of (5) around the
fixed pointR = Q = T , w = v. The maximum eigenvalue,λmax, of the linearization matrix
determines the speed of the exponential convergence towards the fixed point. Figure 1 shows
the eigenvalue spectrum as a function of the first-layer learning rateηJ .

Of particular interest is the critical learning rateηJ,c. Only for η < ηJ,c does the student
network converge to the teacher network. A detailed analysis shows thatηJ,c is independent of
the second-layer learning rateηw. Consequently, the student network can learn the ruleτ(ξ)

perfectly for any value ofηw, as long asηJ < ηJ,c.
The fact that convergence will not be destroyed for any choice ofηw leads naturally to

the conclusion that one should optimize the speed of convergence with respect toηw. One
observes that the eigenvalueλ2 which dominates the convergence for mostη < ηJ,c assumes
its optimal valueλopt

2 asηw →∞. Obviously, the divergence ofηw indicates that we should
have chosen a different scaling for the change of the second-layer weightw. However, from
the above analysis it is not quite clear what kind of scaling this would be. Therefore, we are
going to re-analyse the microscopic dynamics (4).
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Figure 1. Left: eigenvalues of the linearization matrix governing the asymptotics of (5) (λi ) and (7)
(λ̃i ), for T = v = ηw = η̃w = 1. Right: generalization errorεg for two different types of scaling
for the update of the second layer. For the first type (×) the update ofw has been chosen to scale
with 1/N while it is ofO(1) in the second case (+). Symbols represent simulations obtained for
a system withN = 100 averaged over 100 runs, lines show the macroscopic equations of motion
(Q(0) = 1,w(0) = 0.5,R(0) = O(1/√N), ηJ = 2). Errorbars would be smaller than the symbol
size.

3. Rescaling the learning rates for biases and second-layer weights

3.1. Second-layer weight on a different timescale

Without loss of generality, we had chosen the componentJi of the student’s weight vector to
beO(1/

√
N) and the random inputsξi = O(1) with zero mean and unit variance. Together

with the choiceϑi , ϕi = O(1) this assures that the arguments of the transfer functiong

in (1) areO(1). Moreover, in order to make the overall outputsσ , τ becomeO(1) the
second-layer weightsw should beO(1/K), i.e.wi = O(1) for the networks considered here.
Considering the scalingηJ we observe that forηJ = O(1) the change of the internal fields
xi(n + 1)− xi(n) = ηJ δi isO(1). Hence, the change of the instantaneous errorε per learning
step isO(1). The order of magnitude of this change does not alter if one chooses1wi ,
1ϑi = O(Nm) with m 6 0. In the following we will restrict ourselves to the largest change
(m = 0) which corresponds toηw, ηϑ = O(N). This particular scaling of learning rates leads
to the dynamics

Ji (n + 1) = Ji (n) +
ηJ

N
δiξ(n)

wi(n + 1) = wi(n) + η̃wg(xi + ϑi)(τ − σ)
ϑi(n + 1) = ϑi(n) + η̃ϑδi

(6)

where we have definedηw = η̃wN andηϑ = η̃ϑN .
Defining the timescaleα = n/N as above, one immediately notices that the second-layer

weightsw and the biasesϑ change on a much faster timescale than the first-layer weightsJ .
For instance, typicallyO(N) many learning steps are necessary in order to achieve a change
of Ji of orderO(1), while forwi typically only one step is required.

As before, we exemplify the analysis of the dynamical system (6) for the simple two-
layered networkσ = wg(J · ξ). The profound difference in timescales becomes even more
clear when we write (6) in terms of the macroscopic degrees of freedom,R andQ:

dR

dα
= ηJ 〈δy〉 dQ

dα
= 2ηJ 〈δx〉 + η2

J 〈δ2〉 (7)

w(n + 1) = w(n) + η̃w〈g(x)(τ − σ)〉 = η̃w〈vg(y)− w(n)g(x)〉. (8)
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We have to study the combined dynamics of{R,Q} andw. As the timescales of these two
processes differ by a factorN we can adiabatically eliminate [12,13] the fast variablew in the
thermodynamic limit. This basically means that we can act as ifw has reached its stationary
distribution for fixed order parametersR andQ, and use this distribution to compute the
averages on the right-hand sides of (7). This additional average has been denoted by overbars
while the average over the internal fieldsx andy is symbolized by〈. . .〉, as before. Note that
in contrast to the dynamics (3), (5);w is no longer self-averaging for a scaling1w = O(1).

The equilibrium valuew(α) is easily obtained from the equilibrium conditionv〈g(y)〉 −
w(α)〈g(x)〉 = 0 and, hence, depends onR(α) andQ(α) only. Similarly, one obtains the
equilibrium valuew2(α) from the corresponding mean dynamics ofw2:

w2(n + 1) = w2(n) + 2η̃ww(n)〈g(x)(τ − σ)〉 + η̃2
w〈g2(x)(τ − σ)2〉. (9)

Simulations indicate that the equilibrium distribution ofw can be assumed to be Gaussian (and
uncorrelated withx andy) with a good degree of accuracy. Therefore,w(α) andw2(α) can
be used to eliminate all moments ofw on the right-hand sides of (7) which is then a coupled
system of only two macroscopic degrees of freedom.

The numerical solution of the remaining equations of motion forR andQ is in good
agreement with simulations, cf figure 1. As before, the asymptotic dynamics is obtained by
linearizing the two-dimensional system (7) around the fixed point. The resulting matrix has the
eigenvalueλopt

2 which is exactly the same as the dominating eigenvalue of (5) optimized with
respect toηw. (The second eigenvaluẽλ1 is η̃w-dependent with̃λ1 → λ1 asη̃w → 0.) Thus
the divergence ofηw discussed above indicates that the change of the second-layer weightw

can be as large asO(1) and should be larger thanO(1/N). As already pointed out, this result
can be shown to be independent of the particular choice of learning algorithm (3) [11].

In addition, the result can be easily generalized to two-layer networks withK = O(1)
many hidden units. It provides a theoretical explanation of the phenomenological rule that the
change of a weight attached to a certain node in a multi-layer network should scale with the
inverse of the ‘fan-in’, i.e. the number of couplings projecting into that node (see, e.g., [3] and
references therein), that is1J ' 1/N and1w ' 1/K = O(1) in our case.

3.2. Bias on a different timescale

Our reasoning that leads to the rescaled update rule, (6), suggests that bias weights should be
put on a faster timescale as well. We are going to illustrate this for simple perceptron learning:
a student networkσ = erf((J · ξ + ϑ)/

√
2) is trained by examples originating from a teacher

network of the same architecture,τ = erf((B · ξ + ϕ)/
√

2). As before, we compare the
rescaled backpropragation dynamics of type (6) with the ‘traditional’ dynamics (4).

Although not all averages with respect to the internal fieldsx, y can be performed
analytically, the macroscopic equations of motion can be easily numerically integrated for
the ‘traditional’ scaling [17]. In this case the dynamics is described byR,Q andϑ , all three
of which have the property to be self-averaging.

In contrast, a scaling of type (6) requires an adiabatic elimination of the fast variableϑ .
The analysis follows along the same line as before: from the microscopic equations of motion
for ϑ(n) andϑ2(n) one obtains the equilibrium valuesϑ(α), ϑ2(α) which we assume to be
sufficient to describe the distribution ofw at a given timeα. By inserting these equilibrium
values into the equations of motion forR andQone eliminates the fast variableϑ , adiabatically.
The remaining two-dimensional system inR andQ can be solved numerically, see figure 2.

For the ‘traditional’ update of the biasϑ , the analysis is completely equivalent to the one
for the second-layer weights. The eigenvalues of the corresponding linearization matrix show
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Figure 2. Left: generalization errorεg for two different types of scaling for the update of the bias
weight (ϕ = 1, T = 1, ηj = ηϑ = η̃ϑ = 1, initial values and symbols as in figure 1). Right:
comparison of the generalization error of a two-layer network withK = 2 hidden units for the
two different types of scaling of the bias weights (Bi · Bj = δij , wi = vi = 1 fixed,ϕi = 1,
ηϑ = 0.5= η̃ϑ , ηJ = 0.8).

the generic behaviour as in figure 1: there is a critical value ofηJ above which the rule cannot
be perfectly learned. This critical learning rate is independent of the bias’s learning rateηϑ .
Optimizing the dynamics with respect toηϑ (in the range ofηJ whereλ2 is dominant) leads
to ηopt

ϑ →∞ and the same dynamics as for the rescaled updating (6) withηϑ = η̃ϑN .
In order to indicate that our results do not just apply to the examples discussed, figure 2

shows the evolution of the generalization error for a soft-committee machine (wi = vi) [9] of
type (1) withK = 2 hidden units. Comparison is made between backpropagation learning of
type (4) and the dynamics where the change of biases weights per learning step isO(1), cf (6).
As can be seen a dynamics of biases on a faster timescale compared with the weightsJi leads
to a significantly faster decay of the generalization error.

4. Comparison with natural gradient descent

In the preceding section, we have shown that the convergence speed of a backpropagation
learning process increases if one rescales the learning rates of biases and second-layer weights.
One might be led to the conjecture that such a scaling behaviour might follow naturally from
on-line algorithms which yield asymptotically efficient estimation. Recently, Amari [14, 15]
has proposed such an algorithm known as natural gradient descent based on a differential
geometric approach. In this section we will investigate whether the scaling of learning rates
discussed in section 3 automatically arises from natural gradient descent algorithms. The
analysis follows along the line of [15], where the special case of perceptron learning has been
analysed in detail. Perceptron learning corresponds to the caseK = M = v = w = 1 in
(1), (2).

The general update rule for on-line natural gradient descent reads

W(n + 1) =W(n)− η(n)G−1∇Wε(W(n), ξ(n), τ̃ (n)). (10)

Here,τ̃ = τ +ν denotes the teacher output which is distorted by additive noiseν of zero mean
and variance62. The Fisher information metricGwill be defined below. Note that in contrast
to backpropagation (3), the update is determined by the gradient along the full set of weights,
W = {Jj , wj , ϑj }j=1,...,K , with additional rotation and rescaling given by the inverse of the
Fisher metric.

At this point it is important to note that in (10) the learning rateη is the same for every
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component ofW. This means, in particular, that the learning rate does not scale differently with
N for different components ofW. Moreover, in general, an annealing scheduleη(n) ∝ 1/n is
required to assure convergence of the generalization error ofεg ∝ 1/n, see [15,16] for details.

A different scaling of the updates in (10) can only arise if the elements ofG−1 are of
different orders of magnitude. Consequently, it is sufficient to calculate the elements ofG−1 in
order to find out whether the scaling recipe of section 3 naturally arises from natural gradient
descent.

The elements of the Fisher information metric are given by

Gij =
〈
∂

∂Wi

logp(τ̃ , ξ;W) ∂

∂Wj

logp(τ̃ , ξ;W)
〉
ν,ξ

(11)

where the average is over the joint distributionp(τ̃ , ξ;W) of inputsξ and the additive noiseν.
As in section 2 we restrict ourselves to the special case of teacher and student networks with
zero bias and one hidden unit, i.e.W = {J, w} andB = {B, v}. For this case, the components
of G can be calculated explicitly, yielding〈

∂

∂Ji
logp

∂

∂Jj
logp

〉
= aδij + bJiJj (12)〈(

∂

∂w
logp

)2
〉
= c (13)〈

∂

∂w
logp

∂

∂Ji
logp

〉
= dJi (14)

where

a = w2

62

2

π
√

1 + 2Q2
(15)

b = −w
2

62

4

π(1 + 2Q2)3/2
(16)

c = 1

62

∫
Dε[erf(Qε/

√
2)]2 (17)

d = w

62

2

π
√

1 + 2Q2(1 +Q2)
. (18)

Given w and Q = |J |, the inverseG−1 needed in (10) can be calculated. It is
straightforward to show that

G−1 =
(
ãIN×N + b̃JJ> d̃J

d̃J> c̃

)
(19)

whereIN×N denotes theN -dimensional unity matrix and

u = ac + (bc − d2)Q2 (20)

ã = 1/a (21)

b̃ = (d2 − bc)/(au) (22)

c̃ = (a + bQ2)/u (23)

d̃ = −d/u. (24)

From (12)–(24) it is evident that all the elements of the Fisher matrix are of the same order
of magnitude, i.e.O(1). They do not scale withN . The same holds true for the inverseG−1.
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For the changes of the student’s degrees of freedom one obtains the specific update rule

J(n + 1)− J(n) = η(n)(τ̃ − wg){ãg′ξ + [b̃(J>ξ)g′ + d̃g]J}
w(n + 1)− w(n) = η(n)(τ̃ − wg){d̃(J>ξ)g′ + c̃g} (25)

whereg andg′ are to be evaluated atx(n) = J(n) · ξ(n). Consequently, the changes of every
component ofW in (10) are of the same order of magnitude,unlessone deliberately introduces
learning rates which scale differently withN for different components ofW. The latter case
is the one analysed in section 3. Thus, natural gradient descent does not automatically lead to
a learning dynamics where the updates of different degrees of freedom of the student network
are of different orders of magnitude.

5. Summary

We have investigated the scaling of learning rates for on-line learning in simple two-layer
networks. Our findings show that a specific rescaling of the learning rate of biases and second
layer weights leads to a faster overall convergence of the generalization error. For the case of
second-layer weights this result is in accordance with the ‘fan-in’ rule of thumb well known
in application of neural networks.

We have shown that this rescaling effectively leads to a dynamics of the respective weights
which takes place on a faster timescale as compared with the dynamics of the input-to-hidden
weights. An analytic solution of the asymptotical learning dynamics has been obtained by an
adiabatic elimination of the fast degrees of freedom.

In this work, we did not focus on theoptimal choice of this timescale. For instance, a
scaling1w, 1ϑ = O(1/√N) might give rise to even faster convergence. Furthermore, it is
presently not clear how the discussed scaling recipes can be derived from first principles. Here,
we have shown that natural gradient descent can be ruled out as an explanation for these scaling
recipes. An explanation starting from first principles remains a source for further research as
well as a possible extension of the above analysis to systems whereK = O(N).
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